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Abstract We prove that the N particles approximation of a class of stable stationary so-
lutions of the Vlasov equation is uniformly valid on a time scale Nβ for β > 0 (explicitly
given in various cases) much longer than the usual logN scale. The vortex blob method
in dimension 2 is also discussed. The result applies to a class of stationary solutions more
general than in a previous work.
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1 Introduction

We consider the Vlasov type equation

∂tf + v · ∇xf + F [ρf ] · ∇vf = 0, (1)

where f (t, x, v) ≥ 0, x ∈ T
d , v ∈ R

d , the density ρf and the force F [ρf ] are given by

ρf (t, x) =
∫

v

f (t, x, v)dv,

F [ρf ](t, x) = −∇V � ρf = −
∫

y

∇V (x − y)ρf (t, y)dy,

and we assume that the potential V is periodic and such that V (x) = V (−x),
∫

Td V = 0.
This equation describes the dynamics of N particle system in the mean-field limit. This
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assertion can be formalized in the following way: let us consider N particles with positions
xi , i = 1, . . . ,N and velocities vi , i = 1, . . . ,N , which weakly interact via the two-body
potential V :

ẋi = vi, (2)

v̇i = − 1

N

N∑
j=1

∇V (xi − xj ). (3)

We can associate to this particle system the empirical measure

μN(t) = 1

N

N∑
k=1

δ(xk(t),vk(t)) (4)

and we expect that if μN(0) converges weakly to f0 then the empirical measure μN(t) con-
verges, also weakly, to the solution of (1) with f0 as initial data. When V is a singular
potential like a Newtonian or Coulombian potential for d = 2, or d = 3 the rigorous justi-
fication of the previous assertion remains a widely open problem despite a recent advance
for some weakly singular potential (i.e |∇V | ≤ C|x|−α for α < 1) [16]. We shall not work
in this direction here, we shall focus on some qualitative questions which remain open even
when V is smooth. When F = −∇V is Lipschitz, the justification is easier. Indeed there is
no problem to define measure solutions of the Vlasov equation (1), we refer to [25] for ex-
ample. Moreover the empirical measure μN(t) is actually a measure solution of the Vlasov
equation (1) so that the justification of the large N limit can be obtained from a Lipschitz
estimate for the flow of (1) defined on the probability measures. To state a precise result we
first need to define some distance on the space of probability measures. We set

‖μ‖BL∗ = sup
‖ϕ‖BL≤1

∫
x,v

ϕ(x, v)dμ(x, v),

where

‖ϕ‖BL = ‖ϕ‖L∞ + ‖ϕ‖Lip

with

‖ϕ‖Lip = sup
(x1,v1)	=(x2,v2)

|ϕ(x1, v1) − ϕ(x2, v2)|
|x1 − x2| + |v1 − v2| .

The relevance of this norm is that the distance induced by the norm ‖ · ‖BL∗ on the prob-
ability measures metricizes the weak convergence. This distance is actually equivalent to a
Wasserstein distance but we shall not use this here.

With respect to this distance, the following classical result holds (see, for instance [6, 13,
22, 25]):

Theorem 1 Assume that ∇V is Lipschitz, then there exists C > 0, κ > 0 such that for any
bounded measures μ0

1, μ0
2, the two measure solutions of (1) μ1(t), μ2(t) with initial data μ0

1
and μ0

2 satisfy the estimate

‖μ1(t) − μ2(t)‖BL∗ ≤ Ceκt‖μ0
1 − μ0

2‖BL∗ , ∀t ≥ 0. (5)
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Consequently, if μN(0) converges to μ0 in the bounded Lipschitz norm of measures
(equivalent to the weak convergence), then for every fixed time t , μN(t) also converges
to μ(t), the solution of (1), with initial value μ0. Moreover the convergence is uniform
on every finite interval of time [0, T ]. To be more precise, let us assume that the initial
positions and velocities (x0

i , v
0
i )i∈N of the particles are independent identically distributed

random variables with law μ(0). Then in the simplest case where d = 1 (we shall come
back to the general case later), for every ε > 0, there exists C > 0 such that

‖μN(0) − μ(0)‖BL∗ ≤ C

N1/2−ε
(6)

with probability one (a precise statement of the result is given below in Lemma 2). Conse-
quently, by applying Theorem 1 we obtain

‖μN(t) − μ(t)‖BL∗ ≤ eκt C

N1/2−ε

and therefore ‖μN(t) − μ(t)‖ remains uniformly of order 1
Nα for every α ∈ (0,1/2) on a

time scale of order logN . Moreover, for finite times, the fluctuations of the system (2, 3)
have been fully characterized and shown to evolve according to the Vlasov equation lin-
earized around μ(t). In particular propagation of molecular chaos holds in the mean-field
limit and the fluctuations of the observables are described by a Gaussian process (see [6,
25]). Consequently, for finite times, the behaviour of the particles systems is very well un-
derstood. Then, the natural question that arises is:

what happens for longer times?

The problem of describing the o(N) corrections to Vlasov type equations (1) in order to
describe the dynamics of weakly interacting N particles systems (2, 3) on a longer time scale
has been considered in the physical literature for a long time and remains an active field of
research. For example, in the recent papers [4, 5, 27], a simple model of weakly interacting
particles on a circle which is called the Hamiltonian Mean-Field Model (HMF) has been
studied. This model corresponds to the potential V = cos(x) in our general framework.
Note that this potential is smooth and hence in the framework of Theorem 1. The formal
idea is that the long time behaviour should be described by an equation like

∂tf + v · ∇xf + F [ρf ] · ∇vf = ε(N)Q(f ), (7)

where ε(N) is a coefficient vanishing with N in a suitable way. A possible scenario, for the
dynamics is that in a first stage, f will be driven towards the manifold of the stable stationary
solutions of the Vlasov equation (1) and then in a second stage, f will slowly evolve in the
vicinity of this manifold until it reaches eventually the Maxwellian equilibrium. In [27]
the scenario described above is proposed and analyzed from a physical point of view. In
particular the authors give some theoretical arguments supporting the fact that the time to
approach the thermodynamic equilibrium is larger than O(N). Furthermore, from numerical
simulations, they get that the system should converge to the thermodynamic equilibrium in
times TN � Nα , with a non trivial exponent α � 1.7. A similar scenario is exhibited by the
so called “adiabatic piston” model, see [7, 10–12, 15, 18]. Also in this case relaxation to
equilibrium is reached in times diverging with a power of N where N is the number of
particles.
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In the above formal considerations, the understanding of the dynamics in the vicinity of
the manifold of the stable stationary solutions of (1) seems to play an important role towards
a rigorous understanding. Motivated by this fact, we shall focus on this part of the proposed
scenario: we analyze rigorously the dynamics of the particles system in the vicinity of a
stable stationary solution of Vlasov. We do not know how to describe a correction term to
Vlasov but if the scenario proposed is valid, it seems reasonable that if at the initial time
the particles system is close to a stationary stable solution of the Vlasov equation (1) f0,
then the solution of the particles system will remain close to f0 for times much longer than
O(logN). In other words the stable stationary solutions of the Vlasov equations can be seen
as metastable states for the particle system. This is indeed what we prove in a mathematically
rigorous way: we show that if initially the particles are close to f0 in the sense of (6), then
the particles remains close to f0 uniformly at least on a time scale of order Nα , where α > 0
is explicitly given. For example if f0 is the electron patch distribution, f0 = 1|v|≤1, we can
get α = 1/10.

Let us be more specific about our result and its proof. An interesting class of stationary
solutions of (1) is given by f0 = g(|v|). We know, thanks to the Penrose criterion [23], that
if g is a non increasing function of |v| then it is a stable stationary solution of the Vlasov
equation. Assuming in addition that f0 is sufficiently smooth (C2), the stability of a sys-
tem of particles randomly extracted from f0 was already studied in a previous paper [8].
It was shown that the particles system remains close to the stationary distribution f0 on a
time scale N

1
8 . The main ingredient in our proof was the Energy-Casimir method which was

introduced by Arnold for the Euler equations [1] and then generalized to various equations
with Hamiltonian structure by Holm, Marsden, Ratiu and Weinstein [17], see also [2, 24].
The main drawback of this method is that it requires some smoothness of f0(C2) and in
particular the result of [8] does not cover the case where f0 is an electron patch distribution
f0 = 1|v|≤1. Here we study the more general case where f0 is any non increasing compactly
supported L∞ function of |v|, without any regularity requirement. It was shown by Mar-
chioro and Pulvirenti [21] (see also [3]), that these solutions are indeed stable solutions of
the Vlasov equation (1) (actually their result is also valid for the Vlasov–Poisson equation)
in the sense that small perturbations of f0 in L1

x,v remain close to f0 in L1
x,v for ever. The

aim of this paper is in some sense to get long time estimates for perturbations of f0 in a
much more general class of perturbations of f0 which is the class of bounded measures. By
applying the result to the empirical measures (4), we are able to prove that the particle sys-
tem remains close to f0 up to times of the order of N1/14. Moreover for a particular class of
stationary solutions f0, which in particular includes the electron patch 1|v|≤1, we can reach
times of the order of N1/10.

These estimates are just bounds from below and are very probably not optimal. Never-
theless, it is also easy to get an upper bound of the best possible time scale. Indeed, we
emphasize that our results are deterministic in the sense that we do not exclude some pos-
sibly measure zero sets of initial data which are bad for the dynamics: we prove our result
for every initial sequence (x0

i , v
0
i ) of initial positions and velocities, which approximates f0

in the bounded Lipschitz norm of measure with error N− 1
2 +ε . With no further hypothesis

on the initial data we know that we cannot prove our result for too long times. In particular
in the case of the free transport (i.e when V = 0), we can construct an explicit example for
which the particles system is at distance O(1) from the uniform distribution after a time
O(N

1
2 ). The construction is given in [8]. Consequently without any additional restriction

on the choice of the initial date we cannot get in general estimates on a time scale longer
that N

1
2 .
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The paper is organized as follows: in Sect. 2 we state and prove our result when d = 1,
in Sect. 3, we give the extensions of the result in higher dimensions. In Sect. 4, we discuss
the problem of long time estimates in the vortex blob method for the incompressible Euler
equation which is a strongly related problem.

2 The One-Dimensional Case

Let f0(v) ≥ 0, essentially bounded and compactly supported such that

∫
x,v

f0dxdv = 1,

we can consider the probability measure

P = ⊗Nf0dxdv

on (T×R)N and consider the initial sequences (x0
i , v

0
i )i∈N as random variables. We have the

following Lemma:

Lemma 2 For every α ∈ (0,1/2) there exists a set E ⊂ (T×R)N with P ((T×R)N\E) = 0
and a constant C > 0 such that for every sequence (Xi(0) = (xi(0), vi(0))i∈N) ∈ E, we have
for every bounded Lipschitz function ψ :

∣∣∣∣∣
1

N

N∑
i=1

ψ(Xi(0)) −
∫

x,v

ψ(x, v)f0(v)dxdv

∣∣∣∣∣ ≤ C‖ψ‖BL∗

N
1
2 −α

. (8)

In other words this lemma says that almost every choice of the initial particles is a good
approximation of f0 in the bounded Lipschitz distance of measures, since (8) is equivalent
to

‖μN(0) − f0dxdv‖BL∗ ≤ C

N
1
2 −α

, (9)

where

μN(0) =
N∑

i=1

δ(x0
i
,v0

i
).

For an elementary proof of this Lemma see [8]. It is probably possible to deduce this
result from some general theorem of statistics, we refer to [26]. We consider the case where
f0 is compactly supported so that, without loss of generality (this means that we can remove
to E a set of measure zero), we can assume that

E ⊂ T
N × Supp(f0)

N ⊂ T
N × [−S,S]N (10)

for some S > 0.
The main question that we want to investigate is what happens to a particle system such

that the initial positions–velocities (x0
i , v

0
i )i∈N ∈ E. We can prove
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Theorem 3 Let us assume that f0 = g(|v|) ∈ L∞ is compactly supported with g nonin-
creasing, and that ∂xV ∈ C1,1(T) is such that V̂l ≥ 0 where V̂l are the Fourier coefficients
of V .

Then there exists C1 > 0, C2 > 0 and N0 such that for every N ≥ N0 and (x0
i , v

0
i )i∈N ∈ E,

we have the estimate

‖μN(t) − f0dxdv‖BL∗ ≤ C1

(
M

1
3

0

N
1
6 − α

3

+ M
1
3

0 t
1
3

N
1
6 − α

3

+ t

N
1
2 −α

)
, ∀t ∈ [0, T ∗

N ] (11)

with

T ∗
N ≥ C2

N
1
14 − α

7

M
3
7

2 M
1
7

0

,

where M0 = ‖∂xV ‖L∞ , M2 = ‖∂xV ‖C1,1 .

Roughly speaking (11) says that ‖μN(t) − f0dxdv‖BL∗ remains of order N−1/7 at least
on a time scale of order N1/14. In Theorem 3 the assumption on the sign of the Fourier
coefficients of V means that we consider repulsive particles. This result can be seen as
a first step towards the rigorous understanding of the papers [4, 5, 27] since the regularity
assumptions that are needed in Theorem 3 are obviously met when V (x) = cosx. Moreover,
even if it was not the main motivation of this paper, we have tracked the dependence of our
estimates in the regularity of V so that our Theorem can be applied to regularizations of the
Vlasov–Poisson equation as it is often used in numerical methods. For Vlasov–Poisson, the
potential is given by

V̂k = 1

|k|2 ,

so that we can take for example as a basic regularization a finite number of Fourier modes

V =
∑

1≤|k|≤ε−1

eik·x

|k|2 ,

so that in this case

M0 = C, M2 = C

ε2
,

and

T ∗
N ≥ Cε

6
7 N

1
14 − α

7 .

2.1 Proof of Theorem 3

We shall denote by X = (x, v) a point in the phase space and by

F(t, x) = − 1

N

N∑
i=1

∂xV (x − xi(t)) (12)
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the force field created by the particles. For a given system of particles XN = (xi, vi)i=1,...,N ,
we define its kinetic and potential energy as

EK(XN(t)) = 1

N

N∑
i=1

v2
i

2
,

Ep(XN(t)) = 1

N2

∑
1≤i<j≤N

V (xi(t) − xj (t)).

In a similar way, for a density distribution f (t, x, v), we define its kinetic energy as

EK(f (t)) = 1

2

∫
x,v

f (t, x, v)v2dv.

The main difficulty in the proof is to get some uniform bounds on the force F which
are uniformly valid on large interval of times. Indeed, we shall see that all other important
quantities are well-controlled if F is controlled.

At first, we notice that, since V is periodic, we have
∫

x,v

∂k
xV (x)f0(v)dxdv = 0, k = 1,2. (13)

Consequently, we can rewrite ∂k
xF(t, x) for k = 0,1 as

∂k
xF(t, x) = −〈μN(t) − f0dxdv, ∂k+1

x V (x − ·)〉 (14)

where 〈·, ·〉 is the duality bracket between bounded measures and continuous bounded func-
tions.

Since at t = 0, we have by assumption (x0
i , v

0
i )i∈N ∈ E, we can use (9) and (14) to get the

initial estimate

‖F(0, ·)‖∞ + ‖∂xF(0, ·)‖∞ ≤ CM2

N
1
2 −α

. (15)

The proof is based on a bootstrap argument on

η(t) = ‖F(t, ·)‖∞ + ‖∂xF(t, ·)‖∞. (16)

In particular, at first, we will prove the following lemma, which will immediately imply
Theorem 3.

Lemma 4 Let be T > 0 and ε > 0 such that

εT 2 + εT < 1, (17)

and

ε >
CM2

N
1
2 −α

. (18)

If for any t ∈ [0, T ] it holds

η(t) ≤ ε, (19)
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then for any t ∈ [0, T ] it holds

η(t) ≤ CM2

(
1 + t

N
1
2 −α

+ M
1
3

0

1 + t
1
3

N
1
6 − α

3

)
. (20)

2.1.1 Proof of Lemma 4

In the following, C > 0 stands for a number which may change from lines to lines but which
is independent of the crucial parameters in the problem: that is to say N , T , ε, and the
constants describing the regularity of V , M0, M1, M2.

In order to estimate η we will estimate ‖μN(t) − f0dxdv‖BL∗ , and then deduce an esti-
mate of F (and therefore of η) by taking ∂xV and ∂xxV as test functions. In order to do this,
we consider f (t, x, v) the solution of the Liouville equation

∂tf + v∂xf +F(t, x)∂vf = 0 (21)

with the initial condition f (0, x, v) = f0(v). Note that f is a L∞ function and not a measure.
For every t ∈ [0, T ] we have

‖μN(t) − f0dxdv‖BL∗

≤ ‖μN(t) − f (t, x, v)dxdv‖BL∗ + ‖f (t, x, v)dxdv − f0(v)dxdv‖BL∗

≤ I + II (22)

where

I = ‖μN(t) − f (t, x, v)dxdv‖BL∗ ,

I I = ‖f (t, x, v)dxdv − f0(v)dxdv‖BL∗ .

We begin with the estimate of I : for every test function ϕ ∈ BL, we have to estimate

A(ϕ) = 1

N

N∑
i=1

ϕ(Xi(t)) −
∫

x,v

ϕ(x, v)f (t, x, v)dxdv. (23)

Let us define �t : T × Supp(f0) → T × R, as �t(X0) = (x(t,X0), v(t,X0)), with (x, v) the
solution of the ordinary differential equation

ẋ = v, v̇ = F(t, x) (24)

with initial condition X(0,X0) = (x0, v0).
In particular, let us notice that

Xi(t) = �t(Xi(0)). (25)

We point out that since f0 is compactly supported we can restrict the flow to the support
of f0. It will be convenient to introduce S > 0 such that Supp(f0) ⊂ [−S,S].

Notice that f in (21) is constant along the integral curves of the flow defined by (24).
Therefore the solution of (21) can be written as

f (t,X) = f0(�
−1
t (X)). (26)
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Finally, the last useful property of the flow of (24) is that it preserves the Lebesgue
measure. Indeed thanks to (12) and (24), �t is actually the flow of the (nonautonomous)
Hamiltonian system

∂t�t = ∇⊥H(t,�t),

where

H(t,X) = v2

2
+ V(t, x),

V(t, x) = 1

N

N∑
k=1

V (x − xk(t)).

Consequently, thanks to (25), (26), we can rewrite A(ϕ) as

A(ϕ) = 1

N

N∑
i=1

ϕ ◦ �t(Xi(0)) −
∫

x,v

ϕ(x, v)f0(�
−1
t (x, v))dxdv

= 1

N

N∑
i=1

ϕ ◦ �t(Xi(0)) −
∫

x,v

ϕ ◦ �t(x, v)f0(v)dxdv. (27)

To get the last line, we have used that �t preserves the Lebesgue measure. Looking at (27),
it is very tempting to use the fact that (X0

i )i∈N ∈ E and (8) with the test function ψ = ϕ ◦�t .
Towards this, an estimate of ‖�t‖BL is needed. This is the aim of the following Lemma:

Lemma 5 Assuming (19), we have that

|v(t,X0)| ≤ S + 1, ‖�t‖BL ≤ C(1 + t), ∀t ∈ [0, T ]. (28)

The proof of Lemma 5 is postponed to the Appendix.
Now, in order to estimate A(φ) we use (8) with the test function ψ = ϕ ◦ �t . Indeed,

thanks to (28) we have

‖ϕ ◦ �t‖BL ≤ ‖ϕ‖BL‖�t‖BL ≤ C(1 + t)‖ϕ‖BL

for every t ∈ [0, T ] and hence, by using (8) we get

|A(ϕ)| ≤ C‖ϕ‖BL(1 + t)

N
1
2 −α

, ∀t ∈ [0, T ]. (29)

Finally (29) and the definition of the BL∗ norm for measures give for I in (22) the estimate

I ≤ C(1 + t)

N
1
2 −α

, ∀t ∈ [0, T ]. (30)

We now turn to the estimate of II . We first notice that since f is a function we have

II = ‖f (t, x, v)dxdv − f0(v)dxdv‖BL∗ ≤ ‖f (t) − f0‖L1
x,v
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so that it suffices to estimate this last quantity. We use again the fact that �t is Lebesgue
measure preserving. Indeed, let us denote by Leb(A) the Lebesgue measure of a measurable
set A, we have

Leb{(x, v), f (t, x, v) ≥ γ } = Leb{(x, v), f0(v) ≥ γ } (31)

for every γ ≥ 0, since f is given by (26). This allows us to use the following lemma due to
Marchioro and Pulvirenti [20]:

Lemma 6 If f0(v) verifies the assumptions of Theorem 3 there exists C > 0 such that for
every h(x, v) with the property that

Leb{(x, v), h(x, v) ≥ γ } = Leb{(x, v), f0(v) ≥ γ }
for every γ ≥ 0 then we have

‖h − f0‖3
L1(x,v)

≤ C(EK(h) − EK(f0)). (32)

This lemma is just a restatement of Lemma 3 in [20]. For the sake of completeness we
sketch the proof of a special case of this lemma in the Appendix. This lemma means that
among the functions which verifies the property (31), the minimum of the kinetic energy is
reached at f0. Of course the fact that f0 = g(|v|) with g non increasing is a crucial assump-
tion.

Thanks to (31), we can apply Lemma 6 to f (t, x, v), we get

‖f (t) − f0‖3
L1(x,v)

≤ C(EK(f )(t) − EK(f0)), ∀t ≥ 0 (33)

and hence

II 3 ≤ ‖f (t) − f0‖3
L1(x,v)

≤ (EK(f )(t) − EK(f0)), ∀t ≥ 0. (34)

We still need to estimate the right hand side of (34). We write

EK(f (t)) − EK(f0)

≤ EK(f (t)) − EK(XN(t)) + EK(XN(t)) − EK(f0) = D1 + D2 (35)

with

D1 = EK(f (t)) − EK(XN(t)),

D2 = EK(XN(t)) − EK(f0).

Note that D1 and D2 are not necessarily positive but that their sum is because of (33). The
estimate of D1 follows easily. Indeed, we have by definition

D1 ≤ |D1| =
∣∣∣∣∣

1

N

N∑
i=1

vi(t)
2

2
−

∫
x,v

f (t, x, v)
v2

2
dxdv

∣∣∣∣∣.

Thanks to (28) in Lemma 5, we notice that Xi(t) given by (25) remains uniformly on [0, T ]
in a fixed compact, and also that f defined by (26) has a support in a fixed compact in
velocity when T verifies (17). Consequently, we can replace in the definition of D1 the
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function v2 by the function ϕ(x, v) = v2χ(v) where χ(v) is a smooth compactly supported
function such that χ = 1 for |v| ≤ S + 1 so that |D1| becomes

∣∣∣∣
〈
μN(t) − f0dxdv,

v2

2
χ(v)

〉∣∣∣∣.

Since ϕ(x, v) = v2χ(v)/2 is a bounded Lipschitz function we get that

D1 ≤ |D1|
≤ ‖μN(t) − f (t, x, v)dxdv‖BL∗‖v2χ(v)‖BL

≤ C(1 + t)

N
1
2 −α

, ∀t ∈ [0, T ] (36)

thanks to the estimate (30). It remains to estimate D2. We notice that the potential energy
Ep(XN(t)) of the particle system is nonnegative. Indeed, thanks to the Fourier series expan-
sion of the potential V (x), we have

Ep(XN(t)) = 1

N2

∑
i,j

V (xi − xj )

= 1

N2

∑
l

Vl

∑
k,j

eil(xk−xj )

= 1

N2

∑
l

Vl

∣∣∣∑
j

eilxj

∣∣∣2 ≥ 0,

since in the Fourier expansion

V (x) =
∑
l∈Z

Vle
ilx,

the Fourier coefficients Vl are nonnegative by assumption. This yields

EK(XN(t)) ≤ EK(XN(t)) + Ep(XN(t))

= EK(XN(0)) + Ep(XN(0)).

Indeed, for the system (2, 3) the total energy E(XN) = EK(XN)+Ep(XN) does not depend
on time. Consequently, we have

D2 ≤ EK(XN(0)) − EK(f0) + Ep(XN(0)). (37)

To estimate D2, we can again use that

EK(XN(0)) − EK(f0) = 〈μN(0) − f0(v)dxdv, v2χ(v)〉,

and hence since (Xi(0))i ∈ E, (9) gives

|EK(XN(0)) − EK(f0)| ≤ C

N
1
2 −α

. (38)
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Moreover, we can write that

Ep(XN(0)) = 〈μN(0),V(0, ·)〉,

with

V(0, x) = 1

N

N∑
k=1

V (x − xk(0)),

and we notice that

∫
x,v

V(0, x)f0(v)dxdv =
(∫

v

f0(v)dv

)(
1

N

N∑
k=1

∫
x

V (x − xk(0))dx

)

=
∫

v

f0(v)dv

∫
x

V (x)dx

= 0,

since V is by assumption periodic with zero mean. Consequently, we can write Ep(XN(0))

as

Ep(XN(0)) = 〈μN(0) − f0dxdv,V(0, ·)〉
and hence since (X0

i )i ∈ E we get again from (9) that

|Ep(XN(0))| ≤ CM0

N
1
2 −α

. (39)

The combination of (37–39) gives the estimate for D2:

D2 ≤ CM0

N
1
2 −α

. (40)

By collecting the inequalities (34–36, 40), we get that

II ≤ C

(
1 + t

N
1
2 −α

+ M
1
3

0

1 + t
1
3

N
1
6 − α

3

)
, ∀t ∈ [0, T ]. (41)

Finally, thanks to (22) and (30), (41), we find

‖μN(t) − f0dxdv‖Lip ≤ C

(
1 + t

N
1
2 −α

+ M
1
3

0

1 + t
1
3

N
1
6 − α

3

)
, ∀t ∈ [0, T ]. (42)

By using (14) and (42), we finally get (20).

2.2 End of the Proof of Theorem 3

The proof of Theorem 3 follows easily. Let us define a maximal time T ∗
N as

T ∗
N = sup{T ≥ 0,∀t ∈ [0, T ],‖F(t, ·)‖∞ + ‖∂xF(t, ·)‖∞ ≤ ε}.
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We notice that thanks to (18) we already have that T ∗
N is positive. Indeed, (18) implies

η(0) ≤ ε. Let us define TN and ε such that

ε = 4CM2M
1
3

0 T
1
3

N

N
1
6 − α

3

, εT 2
N = 1

2
, (43)

where C is exactly the number which appears in the right hand side of (20). We have focused
on the right hand side of (20) since it gives the worse term for large times. The second
condition is designed to match (17). This yields the expressions

ε = (4CM2)
6
7 M

2
7

0

2
1
7 N

1
7 − 2α

7

, TN = N
1
14 − α

7

2
6
14 (4CM2)

3
7 M

1
7

0

. (44)

Note that TN is large and ε small when N is large. Now let us assume that TN > T ∗
N . Then

we have

ε(T ∗
N)2 + εT ∗

N ≤ εT 2
N + εTN ≤ 1

2
+

√
ε

2
< 1 (45)

for N sufficiently large. Consequently, we can use Lemma 4 and hence (20) at the time
T = T ∗

N . This yields by definition of ε and TN

η(T ∗
N) ≤ ε

4

(
T ∗

N

TN

) 1
3 + Cε3

4(CM2M
1
3

0 )3

T ∗
N

TN

+ CM2

(
M

1
3

0

N
1
6 − α

3

+ 1

N
1
2 −α

)

<
ε

2
+ CM2

(
M

1
3

0

N
1
6 − α

3

+ 1

N
1
2 −α

)

< ε (46)

for N sufficiently large. But this contradicts the definition of T ∗
N . Indeed, by continuity,

the estimate η(t) ≤ ε will persist for times larger than T ∗
N . Consequently, we must have

TN ≤ T ∗
N . This also implies that (42) is true for T = TN . This ends the proof.

3 Extensions

In this section, we state a result analogous to Theorem 3 which is valid in higher dimension,
and when d = 1 and f0 is flat near in a neighborhood of |v| = 0. The first step is to state the
analogous of Lemma 2 in higher dimensions:

Lemma 7 For every α ∈ (0,1/2d) there exists a set E ⊂ (Td × R
d)N with P ((Td ×

R
d)N\E) = 0 and a constant C > 0 such that for every sequence (Xi(0) = (xi(0), vi(0))i∈N)

∈ E, we have for every bounded Lipschitz function ψ

∣∣∣∣∣
1

N

N∑
i=1

ψ(Xi(0)) −
∫

x,v

ψ(x, v)f0(v)dxdv

∣∣∣∣∣ ≤ C‖ψ‖BL∗

N
1

2d
−α

. (47)

Again we refer for example to [8] for the proof. Next we can follow for large times the
dynamics of systems of particles which are initially in E:
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Theorem 8 Under the same assumptions on f0 and V as in Theorem 3, for d = 2,3, and for
d = 1 under the additional assumption that the Lebesgue measure of the set where f0(v) =
‖f0‖∞ is positive, there exists Cd,1 > 0, Cd,2 > 0 such that for every (X0

i )i ∈ E we have the
estimate

‖μN(t) − f0dxdv‖BL∗ ≤ Cd,1

(
1 + M

1
2

0 t
1
2

N
1

4d
− α

2

+ t

N
1

2d
−α

)
, ∀t ∈ [0, T ∗

N ],

with

T ∗
N ≥ Cd,2

N
1

10d
− α

5

M
4
5

2 M
1
5

0

.

Note that for d = 1, this theorem applies in particular to the stationary distribution f0 =
1|v|≤1. In this case, we find that T ∗

N is of order N
1

10 .
We shall not detail the proof of this theorem since it follows the same lines as the proof

of Theorem 3. The crucial estimates used in the proof are (9), (28) of Lemma 5, and (32)
of Lemma 6 which leads to (33). We have already stated in Lemma 7 how (9) has to be
modified, (28) remains valid, so finally we only need to explain how (33) has to be changed.
Thanks to Lemma 3 of [21], the estimate (33) has to be changed in

‖f (t) − f0‖2
L1(x,v)

≤ C(EK(f )(t) − EK(f0)), ∀t. (48)

Note that the power of the L1 norm is a square and not a cube. Actually in Lemma 3 of [21]
the case d = 1 and f0 flat in the vicinity of 0 is not stated even if their proof allows to get
the result with a minor modification. We sketch a proof of this case in the Appendix.

The same considerations as in the end of the proof of Theorem 3, see (43–46), leads to
the definitions

ε = T
1
2

N

N
1

4d
− α

2

, εT 2
N = 1/2

so that we get the expression above for T ∗
N .

4 Vortex Blobs in Dimension 2

Another classical problem of mean-field limit is the convergence of the point vortex sys-
tem towards the incompressible Euler equations in vorticity form, see [21] and references
therein. From a physical point of view, this model is important since it plays a role in the un-
derstanding of the two-dimensional turbulence. Moreover it is also used to design numerical
methods and in this case the singular kernel is often smoothed, see [14, 21] and reference
therein. This method is called the vortex blob method because the process of smoothing the
kernel is equivalent to replace point vortices by blobs of finite size. In this paper, we will
consider the regularized model: we consider a regularized version of the two-dimensional
Euler equations in vorticity form

∂tω + (K � ω) · ∇ω = 0, t > 0, x ∈ R
2, (49)

with

K = ∇⊥(V (|x|)), V (|x|) = ln |x|χ(|x|), (50)
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where χ is a smooth nonnegative function such that χ(x) ∈ [0,1] and

χ(|x|) = 1 if |x| ≥ 2ε,

χ(|x|) = 0 if |x| < ε.

Note that in this section, since we work on the whole R
2, we do not require the potential V

to be periodic any more.
By analogy with the standard Euler equations, we shall set u = K � ω. Note that u is

divergence free. The particles system associated to (49) is

ẋi (t) = 1

N

∑
j 	=i

K(xi(t) − xj (t)), i = 1, . . . ,N. (51)

Again, the empirical measure

μN(t) = 1

N

N∑
i=1

δxi (t)

is a measure solution of (49) and we are interested in the time scale for which this measure
approximates a stable stationary solution of (49). In a recent paper [9], it has been proposed
an equation to describe the o(N) correction to the 2D Euler equations for the vortex model.
This term would give a non trivial evolution on the set of the stationary solutions of the
Euler equations, and is proportional to 1/N . Here we shall prove rigorously that the stable
stationary solutions of the Euler equation are metastable states for the vortex system. This
is in agreement with [9]. More precisely, as in the case of the Vlasov equation, we focus
on the following problem. If initially the particles are independently extracted from a stable
stationary distribution ω0 of (49), for how long time the solution of (51) will be close to ω0?

We consider here the case where ω0 ≥ 0 is compactly supported. Note that as for the case
studied in Sect. 2, the phase space is 2-dimensional. We assume that ω0dx is a probability
measure on R

2 and hence we can define P and E as in Sect. 2 so that we get for every initial
choice (x0

i )i∈N ∈ E that

‖μN(0) − ω0dx‖BL∗ ≤ C

N
1

2−α

. (52)

Moreover, since we consider the case where ω0 is compactly supported, we can also assume
that

E ⊂ (Suppω0)
N ⊂ {|x| ≤ S}N, (53)

for some S > 0.
We can prove the following result:

Theorem 9 Assuming that ω0 = g(|x|) ≥ 0 ∈ L∞ is compactly supported with g nonin-
creasing and that K ∈ C1,1(R), there exists C1 > 0, C2 > 0 such that for every (x0

k )k∈N ∈ E,
we have the estimate

‖μN(t) − ω0dx‖BL∗ ≤ C1

(
1

N
1
4 − α

2

+ t

N
1
2 −α

+ t
1
2

N
1
4 − α

2

)
, ∀t ∈ [0, T ∗

N ]
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with

T ∗
N ≥ C2

N
1
18 − α

9

M
1
9

2 M
1
9

1

,

where M2 = ‖K‖C1,1 ,M1 = ‖K‖C1 .

4.1 Proof of Theorem 9

The method of the proof is quite similar to the proof of Theorem 2, so that we shall only
sketch it, giving the main differences.

Let us define the velocity field created by the particles

U(t, x) = 1

N

N∑
i=1

K(x − xi(t)),

we shall consider ω(t, x) the solution of the transport equation

∂tω + U · ∇ω = 0 (54)

with initial datum ω(0, x) = ω0(x). The part played by f (t, x, v) in the proof of Theorem 3
is played here by ω. We shall denote respectively the moment of inertia for the continuous
density ω(t) and for a particles system as

M(ω(t)) =
∫

R2
ω(t, x)|x|2dx, M(XN(t)) = 1

N

N∑
i=1

x2
i .

The part played by the kinetic energy in the proof of Theorem 3 is played here by the
moment of inertia. In particular the moment of inertia is preserved by both the evolutions
with the particle system (51) and by the regularized Euler equations (49, 50). The bootstrap
argument is on η(t) defined by

η(t) := ‖U(t, ·) − u0‖∞ + ‖∇U(t, ·) − ∇u0‖∞.

Again, the crucial step is to prove the analogous of Lemma 4. Let T > 0 and ε > 0 such that

CM2
1 M2T

2(1 + T 2)ε ≤ 1

2
. (55)

If we have the estimate

η(t) ≤ ε, ∀t ∈ [0, T ] (56)

then the estimate

η(t) ≤ CM2

(
1

N
1
4 − α

2

+ t

N
1
2 −α

+ t
1
2

N
1
4 − α

2

)
(57)

holds for t ∈ [0, T ].
We shall not give the complete proof of this crucial step, but we shall explain the two

main ingredients. As before, we can write

‖μN(t) − ω0dx‖BL∗ ≤ ‖μN(t) − ω(t)dx‖BL∗ + ‖ω(t) − ω0‖L1

= I + II.
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Now let us consider the flow �t,s of the differential equation

ẋ(t) = U(t, x) (58)

this means that t → �t,s(x) is the solution of (58) such that �s,s(x) = x. Then we have
xi(t) = �t,0(x

0
i ) and ω(t, x) = ω0(�

−1
t,0 (x)), moreover since U is divergence free, �t,s is

measure preserving. Consequently, to estimate I as in the proof of Theorem 3, we just need
the analogous of Lemma 5. Here, we have

Lemma 10 Under the assumption (56, 55), we have the estimates

‖�t,s‖∞ ≤ S + 1, ∀s, t, s ≤ t ≤ T (59)

and

‖�t,s‖BL ≤ CM1(1 + t − s), ∀s, t, s ≤ t ≤ T . (60)

The proof of the lemma is postponed to the Appendix. With this lemma, we easily get

I ≤ C
1 + t

N
1
2 −α

, ∀t ∈ [0, T ]. (61)

To estimate II , we can use Lemma 1 in [19] to get

C‖ω(t) − ω0‖2
L1 ≤ M(ω(t)) − M(ω0) (62)

and then we write

CII 2 ≤ M(ω(t)) − M(ω0)

≤ M(ω(t)) − M(XN(t)) + M(XN(t)) − M(ω0)

≤ M(ω(t)) − M(XN(t)) + M(XN(0)) − M(ω0)

:= D1 + D2,

where we have used the conservation of the moment of inertial for the particles systems. It
is now very easy to estimate D1 and D2 thanks to arguments already used, we shall not give
more details. This yields an estimate of II . By combining this estimate with (61), we easily
get (57).

Once (57) is proved, we can easily end the proof of Theorem 9. We can define T ∗
N as

the maximum time for which the estimate (56) holds. A continuation argument leads to the
choices

ε = CM2T
1
2

N

N
1
4 − α

2

, CM2M
2
1 εT 4

N = 1

which finally gives a bound from below for T ∗
N .
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Appendix

Here we give the proof of Lemma 5, of Lemma 10, and, for the sake of completeness, we
sketch a proof of Lemma 6 which is taken from Marchioro and Pulvirenti [20].

5.1 Proof of Lemma 5

The proof is very elementary. At first, the integration of (24) gives

|v(t,X0)| ≤ |v0| +
∫ t

0
F(s, x(s))ds ≤ S + εT ≤ S + 1.

For the second inequality, we have used (19) and for the last one we have used (17). Next,
thanks to Duhamel formula, we can rewrite (24) as

�t(X0) = etAX0 +
∫ t

0
e(t−s)AG(s,�s(X0))ds,

where

A =
(

0 1
0 0

)
, G(s,�s(X0)) = (0,F(s,�s(X0))

t .

Consequently, we get for t ∈ [0, T ]

‖�t‖Lip ≤ (1 + t) +
∫ t

0
(1 + t − s)‖F(s, ·)‖Lip‖�s‖Lip

≤ (1 + t) + ε(1 + t)

∫ t

0
‖�s‖Lipds,

where we have again used (19). Finally, we get thanks to a variation on the Gronwall Lemma
that

‖�t‖Lip ≤ (1 + t)et(1+t)ε ≤ C(1 + t), ∀t ∈ [0, T ],
where in the last inequality we have used (17).

5.2 Proof of Lemma 6

We shall give the proof of the estimate (48) in the case where d = 1 and μ0 = Leb{f0 =
‖f0‖∞} > 0 which is clear from the proof in [20] even if it is not stated. Following [20], we
first define

Ak =
{
f >

k

M
‖f0‖∞

}
, Ak

0 =
{
f0 >

k

M
‖f0‖∞

}
, k = 1, . . . ,M − 1.

Note that by assumption, we have Leb(Ak) = Leb(Ak
0). We approximate f and f0 by

f M = ‖f ‖∞
M

M∑
k=1

1Ak , f M
0 = ‖f ‖∞

M

M∑
k=1

1Ak
0
.
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We have

EK(f M) − EK(f M
0 ) = ‖f0‖∞

2M

∑
k

∫
Ak\Ak

0

v2 −
∫

A0
k
\Ak

v2

≥ ‖f0‖∞
2M

∫ μk+βk

μk

v2 −
∫ μk

μk−βk

v2,

where μk = 1
2 Leb(Ak) and βk = ‖1Ak − 1Ak

0
‖L1 . Consequently, we get

EK(f M) − EK(f M
0 ) ≥ ‖f0‖∞

2M

∑
k

2μkβ
2
k

≥ ‖f0‖∞
4M

μ0

∑
k

‖1Ak − 1Ak
0
‖2

L1 ≥ μ0

4‖f0‖∞
‖f M − f M

0 ‖2
L1 .

We finish the proof by taking the limit M → +∞.

5.3 Proof of Lemma 10

It remains to prove Lemma 10. This is more difficult than Lemma 5 in the proof of Theo-
rem 3 since the ordinary differential equation (58) is not a small perturbation of a linear one.
A proof has been given in [8]. We give here a slightly different one.

The first step is to get some useful bounds on u0. At first, we notice that since K is
smooth and ω0 compactly supported, we have

‖u0‖∞ ≤ CM0, ‖∇u0‖∞ ≤ CM1, ‖∇u0‖Lip ≤ CM2. (63)

Moreover, by using the shape of V given by (50), we notice that

u(0) = −
∫

R2
V ′(|y|)y

⊥

|y|ω0(|y|)dy = 0

by symmetry. Consequently, thanks to (63), we also have

|u0(x)| ≤ CM1|x|, ∀x (64)

which gives a better estimate than (63) close to zero. Finally, we notice that we can write u0

as u0 = ∇⊥ψ0 where

ψ0 =
∫

R2
V (|x − y|)ω0(|y|)dy.

Since V and ω0 are invariant by rotations, we find that ψ0 is actually a function of |x| only
so that u0 can be written under the form

u0(x) = f (|x|)x
⊥

x
. (65)

To have lighter notations during the proof we shall denote �t,s(x) (see (58)) by X(t).
We begin with the proof of (59). Note that

Ẋ(t) = u0(X(t)) + (U(t,X(t)) − u0(X(t)))
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and that thanks to (65), we have u0(X) · X = 0. Consequently, we find thanks to (56)

d

dt

1

2
|X(t)|2 ≤ ε|X(t)|, ∀t ∈ [s, T ]

and hence the integration gives (59).
We now turn to the proof of the Lipschitz estimate. We shall actually prove a C1 estimate

giving a bound of Dx�t,s . Let us set for every h ∈ R
2, Y (t) = Dx�t,s(x) · h, Y will be the

solution of the differential equation

Ẏ (t) = DxU(t,X(t)) · Y (t)

with the initial condition Y (s) = h. Let us introduce X0(t), the solution of the ordinary
differential equation

Ẋ = u0(X) (66)

with initial value X0(s) = x the same as for X. To estimate Y we notice that

Ẏ = Dxu0(X
0(t)) · Y + (J1(t) + J2(t)) · Y (67)

where

J1(t) = Dxu0(X(t)) − Dxu0(X
0(t)),

J2(t) = DxU(t,X(t)) − Dxu0(X(t)).

We want to rewrite (67) by using the Duhamel formula. The first step is to study the flow
�0

t (x) of the autonomous differential equation (66). Again t → �0
t (x) is the solution of

(66) such that �0
0(x) = x. This flow has a very simple expression thanks to (65). Indeed, by

identifying R
2 and C, we get that

�0
t (x) = x exp

(
it

f (|x|)
|x|

)
.

This implies that for every x, |x| ≤ S, we have

|D�0
t (x) · h| ≤ C|h|

(
1 + t

(
f ′(|x|) + f (|x|)

|x|
))

≤ CM1(1 + t)|h| (68)

where in the last inequality, we have used (65), (63) and (64). Since the fundamental matrix
G(t, s), with G(s, s) = Id , of the linear equation

Z′ = Dxu0(X
0(t)) · Z

is given by Dx�
0
t−s(X

0(t)), we can rewrite (67) as

Y (t) = Dx�
0
t−s(X

0(t)) · h +
∫ t

s

Dx�
0
t−τ (X

0(t)) · (J1(τ ) + J2(τ ))dτ. (69)

We need to estimate J1 and J2. The estimate of J2 is actually easy to get. Indeed, thanks to
(56) we have

|J2(τ )| ≤ ε, ∀τ ∈ [0, T ]. (70)
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To estimate J1, we need an estimate of X − X0. Towards this, we notice that X − X0 is a
solution of the differential equation

d

dt
(X − X0) = Dxu0(X

0(t)) + K1 + K2,

where

K1 = U(t,X(t)) − u0(X(t)),

K2 = u0(X(t)) − u0(X
0(t)) − Dxu0(X

0(t)) · (X(t) − X0(t)).

Again thanks to the Duhamel formula (we recall that X and X0 have the same initial values),
we can write

X(t) − X0(t) =
∫ t

s

Dx�
0
t−τ (X

0(t)) · (K1(τ ) + K2(τ ))dτ. (71)

By (56), we have

|K1(τ )| ≤ ε, ∀τ ∈ [0, T ],
and by the Taylor formula, we have

|K2(τ )| ≤ CM2|X(τ) − X0(τ )|2,
so that by using the estimate (68), we get

|X(t) − X0(t)| ≤ CM1ε(t − s)(1 + t − s)

+ CM2M1

∫ t

s

(1 + |t − τ |)|X(τ) − X0(τ )|2dτ. (72)

The integration of this inequality gives (we postpone the proof until the end of the section)

|X(t) − X0(t)| ≤ CM1ε(t − s)(1 + (t − s)), ∀t, s,0 ≤ s ≤ t ≤ T (73)

if

εCM2M
2
1 T 2(1 + T )2 ≤ 1

2
. (74)

Thanks to (73), we get

|J1| ≤ CM2M1ε(t − s)(1 + (t − s)), ∀t, s,0 ≤ s ≤ t. (75)

By choosing T in such a way that the constraint (74) is verified, it is now possible to esti-
mate Y . Using (69) with the estimates (68), (75), (70), and (73), we get

Y (t) ≤ CM1(1 + t − s)|h| + CεM1M2(1 + (t − s)2)

∫ t

s

Y (τ )dτ.

A variation on the Gronwall Lemma then gives

|Y (t)| ≤ CM1M2(1 + t)|h|eCεM2
1 t (1+t2).
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By using (55), we finally get the desired result.
It remains to explain how we get (73) from (72). Note that (72) implies that we have for

every t1 ≥ t and t1 ≤ T that

|X(t) − X0(t)| ≤ CM1ε(t1 − s)(1 + t1 − s)

+ CM2M1(1 + t1 − s)

∫ t

s

|X(τ) − X0(τ )|2dτ. (76)

Now let us define

Z(t) = CM1ε(t1 − s)(1 + t1 − s) + CM2M1(1 + t1 − s)

∫ t

s

|X(τ) − X0(τ )|2.

Note that

Z(s) = CM1ε(t1 − s)(1 + t1 − s). (77)

Next we get

Ż(t) ≤ CM2M1(1 + t1 − s)|X(t) − X0(t)|2
≤ CM2M1(1 + t1 − s)|Z(t)2.

The integration of this Riccati inequality gives

Z(t) ≤ Z(s)

1 − CM2M1(t − s)(1 + t − s)Z(s)
, ∀t, s ≤ t ≤ t1 ≤ T .

Thanks to (77), we get in particular

|X(t1) − X0(t1)| ≤ Z(t1)

≤ CM1ε(t1 − s)(1 + t1 − s)

1 − CM2M
2
1 (t1 − s)2(1 + t1 − s)2

.

Since this inequality is actually valid for every t1, we get (73) under the condition (55).

References

1. Arnold, V.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à
l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16(1), 319–361 (1966)

2. Batt, J., Morrison, P.J., Rein, G.: Linear stability of stationary solutions of the Vlasov–Poisson system in
three dimensions. Arch. Ration. Mech. Anal. 130(2), 163–182 (1995)

3. Batt, J., Rein, G.: A rigorous stability result for the Vlasov–Poisson system in three dimensions. Ann.
Mat. Pure Appl. (4) 164, 133–154 (1993)

4. Bouchet, F.: The stochastic process of equilibrium fluctuations, of a system with long range interactions.
Phys. Rev. E 70, 036113 (2004)

5. Bouchet, F., Dauxois, T.: Out-of-equilibrium relaxation and anomalous correlations of the HMF model.
Preprint (2005)

6. Braun, W., Hepp, K.: The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical
particles. Commun. Math. Phys. 56(2), 101–113 (1977)

7. Caglioti, E., Chernov, N., Lebowitz, J.: Stability of solutions of hydrodynamic equations describing the
scaling limit of a massive piston in an ideal gas. Nonlinearity 17, 897–923 (2004)

8. Caglioti, E., Rousset, F.: Long time estimates in the mean field limit. Arch. Ration. Mech. Anal. (2007,
to appear)



J Stat Phys (2007) 129: 241–263 263

9. Chavanis, P.H.: Kinetic theory of point vortices: diffusion coefficient and systematic drift. Phys. Rev. E
64, 026309 (2001)

10. Chernov, N., Lebowitz, J.: Dynamics of a massive piston in an ideal gas: oscillatory motion and approach
to equilibrium. J. Stat. Phys. 109, 507–527 (2002)

11. Chernov, N., Lebowitz, J., Sinai, Y.G.: Scaling dynamic of a massive piston in a cube filled with ideal
gas: exact results. J. Stat. Phys. 109, 529–548 (2002)

12. Chernov, N., Lebowitz, J., Sinai, Y.G.: Dynamics of a massive piston in an ideal gas. Russ. Math. Surv.
57, 1045–1125 (2002)

13. Dobrushin, R.L.: Vlasov equations. Funkc. Anal. Prilozh. 13(2), 48–58 (1979)
14. Goodman, J., Hou, T.Y.: New stability estimates for the 2-D vortex method. Commun. Pure Appl. Math.

44(8–9), 1015–1031 (1991)
15. Gruber, C., Pache, S., Lesne, A.: Two times scale relaxation towards thermal equilibrium of the enigmatic

piston. J. Stat. Phys. 112, 1199–1228 (2003)
16. Hauray, M., Jabin, P.-E.: N particles approximation of the Vlasov equations with singular potential.

Arch. Ration. Mech. Anal. 183(3), 489–524 (2007)
17. Holm, D.D., Marsden, J.E., Ratiu, T., Weinstein, A.: Nonlinear stability of fluid and plasma equilibria.

Phys. Rep. 123(1–2), 116 (1985)
18. Malek Mansour, M., Van den Broeck, C., Kestemont, E.: Hydrodynamic relaxation of the adiabatic

piston. Europhys. Lett. 69(2), 510–516 (2005)
19. Marchioro, C., Pulvirenti, M.: Some considerations on the nonlinear stability of stationary planar Euler

flows. Commun. Math. Phys. 100(3), 343–354 (1985)
20. Marchioro, C., Pulvirenti, M.: A note on the nonlinear stability of a spatially symmetric Vlasov–Poisson

flow. Math. Methods Appl. Sci. 8(2), 284–288 (1986)
21. Marchioro, C., Pulvirenti, M.: Mathematical theory of incompressible nonviscous fluids. In: Applied

Mathematical Sciences, vol. 96. Springer, New York (1994)
22. Neunzert, H.: An introduction to the nonlinear Boltzmann–Vlasov equation. In: Kinetic Theories and

the Boltzmann Equation (Montecatini, 1981). Lecture Notes in Math., vol. 1048, pp. 60–110. Springer,
Berlin (1984)

23. Penrose, O.: Electrostatic instability of a uniform non-Maxwellian plasma. Phys. Fluids 3, 258–265
(1960)

24. Rein, G.: Non-linear stability for the Vlasov–Poisson system—the energy-Casimir method. Math. Meth-
ods Appl. Sci. 17(14), 1129–1140 (1994)

25. Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Verlag (1991)
26. van der Vaart, A.W.: Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathemat-

ics. Cambridge University Press, Cambridge (1998)
27. Yamaguchi, Y.Y., Barré, J., Bouchet, F., Dauxois, T., Ruffo, S.: Stability criteria of the Vlasov equation

and quasi-stationary states of the HMF model. Physica A 337, 36–66 (2004)


	Quasi-Stationary States for Particle Systems in the Mean-Field Limit
	Abstract
	Introduction
	The One-Dimensional Case
	Proof of Theorem 3
	Proof of Lemma 4

	End of the Proof of Theorem 3

	Extensions
	Vortex Blobs in Dimension 2
	Proof of Theorem 9

	Acknowledgements
	Appendix
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 10

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


